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Abstract

Starting from the issue of what is the correct form for a Legendre transformation of the strain energy in terms of

Eulerian and two-point tensor variables we introduce a new two-point deformation tensor, namely H ¼ ðF� F�TÞ=2, as
a possible deformation measure involving points in two distinct configurations. The Lie derivative of H is work con-

jugate to the first Piola–Kirchhoff stress tensor P. The deformation measure H leads to straightforward manipulations

within a two-point setting such as the derivation of the virtual work equation and its linearization required for finite

element implementation. The manipulations are analogous to those used for the Lagrangian and Eulerian frameworks.

It is also shown that the Legendre transformation in terms of two-point tensors and spatial tensors require Lie

derivatives. As an illustrative example we propose a simple Saint Venant–Kirchhoff type of a strain-energy function in

terms of H. The constitutive model leads to physically meaningful results also for the large compressive strain domain,

which is not the case for the classical Saint Venant–Kirchhoff material.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

For the rate _W of the free Helmholtz-energy function W it is common practice to use the expressions

S : _E, where S is the second Piola–Kirchhoff stress tensor and _E the material time derivative of the Green–

Lagrange strain tensor, or s : d, where s is the Kirchhoff stress tensor and d the rate of deformation tensor,

or P : _F, where P is the first Piola–Kirchhoff stress tensor and _F the material time derivative of the

deformation gradient (both are two-point tensors). By dealing with phase transformations it is often more

useful to employ the Gibbs free energy g, which may be obtained from W by means of a Legendre
transformation. While it is obvious that the Legendre transformation g ¼ W� S : E in terms of material
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tensors leads to _g ¼ �E : _S, the situation in an Eulerian description or a two-point formulation is not so

obvious. Note that, for example, E : _S 6¼ F : _P.
One aim of the paper is to show that it is possible to derive the Gibbs free energy in terms of Eulerian or

two-point tensors by the use of well-known algebraic manipulations. Consequently, some interesting new
results occur. In Section 2 we introduce a new two-point deformation tensor H and discuss material and Lie

derivatives as well as associated properties. In addition, we introduce some necessary definition of strain

and stress measures. Section 3 starts by introducing the Legendre transformation in terms of material

tensors––associated properties are discussed. Legendre transformations in Eulerian and two-point forms

are derived, where Lie derivatives are required. Section 4 aims to discuss the relationships between the stress

power in terms of P, F and H. In Section 5 we introduce the internal virtual work and its linearization in

terms of the two-point tensors P and H, which is the departure for the finite element method. The elasticity

tensor is provided. We show that the associated structure is similar to that of the well-known results ob-
tained from the Lagrangian and Eulerian descriptions, and summarize the results in a table. As an illus-

trative example in Section 6 we propose a simple Saint Venant–Kirchhoff type of a strain-energy function in

terms ofH and derive the constitutive relation P ¼ PðHÞ. Based on the properties ofH we obtain physically

meaningful results also for the large strain domain, which is not the case for the classical Saint Venant–

Kirchhoff material. Appendix A provides a general form for P ¼ PðHÞ, which is derived from the free

Helmholtz-energy function.
2. Definition of kinematical quantities and stress tensors

In this section we introduce some necessary definition of deformation, strain and stress measures in

addition to relevant Lie derivatives.
We consider a reference frame of coordinate axes at a fixed origin with orthonormal basis vectors and

introduce a new (covariant) deformation tensor of the form
H ¼ 1

2
ðF� F�TÞ: ð1Þ
Herein F is the deformation gradient, with detF ¼ J > 0, where J denotes the volume ratio. The two-point

tensor H may be seen as the transformation H ¼ F�TE (or H ¼ eF), where E is the Green–Lagrange strain

tensor and e ¼ F�TEF�1 the Euler–Almansi strain tensor. As can be seen, H follows from E by trans-

forming one fixed set of three basis vectors to the current configuration, while e follows from E by a

classical push-forward operation, i.e. E ! H ! e. Note that for F ¼ I we get H ¼ O.

To get an idea about the physical interpretation of H we consider a one dimensional problem, for
example, a rod, which is elongated from the initial length l0 up to the current length l. Thus, we have
E ¼ 1

2

l2 � l20
l20

¼ 1

2
ðk2 � 1Þ; ð2Þ

H ¼ 1

2

l2 � l20
ll0

¼ 1

2
k

�
� 1

k

�
; ð3Þ

e ¼ 1

2

l2 � l20
l2

¼ 1

2
1

�
� 1

k2

�
; ð4Þ
where k ¼ l=l0 denotes the stretch ratio. Fig. 1 illustrates the distribution of the different measures E, H and

e along k varying between 0þ and þ1. An interesting feature of H is the fact that the deformation measure
goes to þ1 if l goes to plus infinity, and the deformation measure goes to �1 if l goes to zero. However,



Fig. 1. Deformation measures E, H and e versus the stretch ratio k ¼ l=l0 showing the tendency of H ! þ1 as k ! þ1 and H ! �1
as k ! 0. Note that E ¼ �1=2 for k ! 0 and e ¼ 1=2 for k ! þ1.
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as well-known, for the case of E and e, we have the situation that if l goes to þ1, then e goes to 1/2, and if l
goes to zero then E goes to )1/2, which are physical awkward results.

In order to find an expression in which the two-point tensor H is given in terms of principal directions

and principal stretches we start from the relation
F ¼ RU ¼
X3

a¼1

kaðRbNaÞ � bNa ¼
X3

a¼1

kan̂a � bNa ð5Þ
for the deformation gradient F, where the spectral decomposition U ¼
P3

a¼1 ka bNa � bNa for the (symmetric)

right stretch tensor U has been used. Herein, bNa, a ¼ 1, 2, 3, are the principal referential directions

(mutually orthogonal and normalized eigenvectors of the material tensor U), ka are their corresponding

principal stretches (eigenvalues of U), and n̂a ¼ RbNa are the corresponding principal spatial directions,
where R is the (proper orthogonal) rotation tensor. Consequently, we may write
F�T ¼ RU�1 ¼
X3

a¼1

k�1
a n̂a � bNa; ð6Þ
where the property RTR ¼ I for the orthogonal tensor R has been used. Hence, by means of (5)3 and (6)2,H

may be expressed in terms of principal stretches and principal directions. From definition (1) we finally get
the useful relationship
H ¼ 1

2

X3

a¼1

ðka � k�1
a Þn̂a � bNa: ð7Þ
For the sake of completeness we express the deformation tensor H as the gradient of the displacement
field u of a typical particle. By the use of Gradð�Þ and gradð�Þ for the derivatives of ð�Þ with respect to the

reference and current positions we have F ¼ IþGradu and F�1 ¼ I� gradu. Thus, we may write Eq. (1) in

the form
H ¼ 1

2
½Graduþ ðgraduÞT�: ð8Þ
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The Lie derivatives ofH and e, denoted by £vH and £ve, follow with the concept of directional derivatives

(see, for example, Holzapfel, 2000). Thus, we have
£vH ¼ F�T _E ¼ F�Tð _
FTHÞ; ð9Þ

£ve ¼ F�T _EF�1 ¼ F�Tð _
FTeFÞF�1; ð10Þ
where the material time derivative is denoted by a superposed dot. Clearly, from relation (9)2 we find the

material time derivative of H to be
_H ¼ �lTHþ £vH; ð11Þ

where l ¼ _FF�1 denotes the spatial velocity gradient.

Regarding the concept of stress we introduce the two-point tensor P, i.e. the first Piola–Kirchhoff stress

tensor, by analogy with the above procedure. It may be seen as the transformation P ¼ FS (or P ¼ sF�T),

where S is the second Piola–Kirchhoff stress tensor and s ¼ FSFT denotes the Kirchhoff stress tensor

ðS ! P ! sÞ.
The Lie derivatives of P and s are
£vP ¼ F _S ¼ Fð _
F�1PÞ; ð12Þ

£vs ¼ F _SFT ¼ Fð _
F�1sF�TÞFT; ð13Þ
which is the analogue of Eqs. (9) and (10).
3. Legendre transformation

In this section we aim to derive Legendre transformations, in particular, in terms of H, P and e, s.
We consider hyperelastic materials within a purely mechanical framework. We introduce a free Helm-

holtz-energy function W ¼ WðEÞ, defined per unit volume, in which W is solely a function of E such that the

physical expression of the form
S ¼ oWðEÞ
oE

ð14Þ
holds. Thus, the rate of W, which in our case is the stress power _W, is given by
_WðEÞ ¼ S : _E; ð15Þ

where S and E are work conjugate variables. Herein E is the independent state variable and S ¼ SðEÞ is the
dependent state variable. They are interrelated via the constitutive relation (14).

Now we introduce a new function g ¼ gðSÞ, depending on the independent variable S, which requires

invertibility of (14), at least locally. Hence, we use the transformation of the form (see, Courant and

Hilbert, 1962, pp. 32–39)
gðSÞ ¼ WðEðSÞÞ � S : EðSÞ; ð16Þ
which is called Legendre transformation, W ! g. Thus, by computing the material time derivative and
using Eq. (15) we get
_gðSÞ ¼ _WðEÞ � S : _E� E : _S ¼ �E : _S: ð17Þ
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Before proceeding it seems to be beneficial to briefly explain some characteristics of the Legendre

transformation (Gyarmati, 1970; Callen, 1985; �Silhav�y, 1997).
By using W ¼ WðEÞ and Eq. (14) we are able to eliminate E in favour of S. However, if we are using the

transformation Ŵ ¼ Ŵ½SðEÞ� instead of Eq. (16) then we are not preserving the full information because, for
this case, S only contains information about the gradient ofW. As Callen (1985, Section 5.2) pointed out we

can only describe the shape of a function if we know its gradient in each point, but there still remains

unknown constants in order to fully describe the function.

At this point we provide a brief geometrical interpretation of the Legendre transformation. Given a

function w ¼ wðEÞ, which depends on the variable E, and hence SðEÞ ¼ dw=dE is the gradient of the

function in each point. If we desire to consider S as an independent variable in place of E, then we might

find E as a function of S by eliminating E between the above mentioned relations. However, thereby we

would lose some of the information of the given relation w ¼ wðEÞ, because knowing the gradient of w in
each point enables us only to restore the shape of the function (the shape of the curve in our example), and

not its absolute spatial position. Additionally, if we know the intersection of each tangent of our curve with

the abscissa, we will also know the absolute spatial position of the curve. By calling these intersections g, we
may write it as a function of the gradients, i.e. g ¼ gðSÞ. The function g now contains the identical

information as function w. From the geometrical point of view this means that we can describe a given

curve equally well either as the locus of points satisfying the relation w ¼ wðEÞ or as the envelope of a

family of tangent lines. It is obvious from our example that we can get g via the relation g ¼ w� SE. This
transformation, which stores the full information about the curve, is a Legendre transformation. Hence, we
see that we may derive the variable E by means of EðSÞ ¼ �dg=dS, and again we may derive a Legendre

transformation w ¼ g þ SE.
Having this in mind, we continue by applying the Legendre transformation to the Gibbs free energy g.

Starting from (16) it follows that W ¼ g þ S : E, and E ¼ �ogðSÞ=oS. Thus, material time derivative gives

with (17)2
_W ¼ _g þ S : _Eþ _S : E ¼ S : _E ð18Þ
(compare with (15)).

In an analogous manner we consider now Legendre transformations in terms of H, P and e, s.
Straightforward tensor manipulations give
S : E ¼ FS : F�TE ¼ P : H; ð19Þ
and
S : E ¼ FSFT : F�TEF�1 ¼ s : e: ð20Þ
From Eqs. (19) and (20) it is attempting to postulate thatH and e are the work conjugate variables to P and

s. However, as can be shown, the relations
s 6¼ oW
oe

and P 6¼ oW
oH

ð21Þ
hold (isotropy has been assumed). Hence, it seems not to be possible to define a new variable in the sense of

Eq. (14) and Legendre transformations of the forms WðeÞ ! gðsÞ and WðHÞ ! gðPÞ. However, as shown in

the following, it is possible to define Legendre transformations by means of push-forward operations and

Lie derivatives. Starting from (14) and (15), we obtain by means of (9)1 the relation
_W ¼ F
oW
oE

: F�T _E ¼ F
oW
oE

: £vH: ð22Þ
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If we express the free Helmholtz energy in terms of two-point tensors, then, from Eq. (22) it follows that

H is the independent state variable and FðoW=oEÞ is the dependent variable, where FðoW=oEÞ ¼ FS ¼ P.

Hence, the analogue of Eq. (15) in a two-point formulation gives the stress power
_W ¼ P : £vH: ð23Þ

By means of Eq. (10)1 we find the associated relation in the current configuration
_W ¼ F
oW
oE

FT : F�T _EF�1 ¼ F
oW
oE

FT : £ve: ð24Þ
Herein e is the independent state variable and FðoW=oEÞFT is the dependent variable, where

FðoW=oEÞFT ¼ FSFT ¼ s. Hence, the analogue of Eq. (15) in terms of spatial tensors reads
_W ¼ s : £ve: ð25Þ

We are now able to define the Legendre transformation g ¼ W� P : H in terms of two-point tensors.

Because of the fact that W is a scalar it is straightforward to show that the Lie derivative of the two-point

tensors P and H is equal to _P : H. Hence, with this property and Eq. (23) we get
_g ¼ _W� P : £vH� £vP : H ¼ �H : £vP; ð26Þ

and hence, with E ¼ �ogðSÞ=oS and H ¼ F�TE, we obtain
_g ¼ F�T og
oS

: £vP: ð27Þ
The Legendre transformation g ¼ W� s : e in terms of spatial tensors follows by means of
_s : e ¼ £vðs : eÞ, and Eq. (25) to
_g ¼ _W� s : £ve� £vs : e ¼ �e : £vs; ð28Þ

with e ¼ �F�T½ogðSÞ=oS�F�1, we obtain
_g ¼ F�T og
oS

F�1 : £vs: ð29Þ
The objective time derivative, the variation and the linearization of a spatial tensor (or a two-point tensor)

are based on the concept of Lie derivatives, and hence this concept is also applicable for the Legendre
transformation of a spatial tensor (or a two-point tensor).
4. Properties of the stress power P : £vH

In this section we aim to discuss the relations between the stress power P : £vH and the stress power

P : _F.
As we know from the literature, one form of the stress power is _W ¼ P : _F, which in combination with

(23), results to _W ¼ P : £vH ¼ P : _F. Note that, in general, _F 6¼ £vH, as can be seen from (9).

By means of Eqs. (23) and (9)1 we find that
_W ¼ P : £vH ¼ P : F�TsymðFT _FÞ ¼ P :
1

2
ð _Fþ F�T _

FTFÞ: ð30Þ
In addition, we find by means of the symmetric tensor S ¼ F�1P that
_W ¼ P : £vH ¼ F�1P : symðFT _FÞ ¼ S :
_
FTF ¼ P : F�T _

FTF: ð31Þ
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In summary, we achieve as an extension of Eq. (23) the relationships
_W ¼ P : £vH ¼ P :
1

2
ð _Fþ F�T _

FTFÞ ¼ P : _F ¼ P : F�T _
FTF: ð32Þ
By recalling the well-known relation PFT ¼ FPT, which is a consequence of the symmetry of S (or s), we

find the important property P ¼ FPTF�T. Note that this relationship does not directly follow from Eq.

(32)3, i.e. P : _F ¼ FPTF�T : _F. Interestingly, recalling the form P : _F ¼ P : F�T _
FTF, an equivalent rela-

tionship for _F does not exist, namely _F 6¼ F�T _
FTF. It is the property of P that we can use the equivalent

forms _W ¼ P : £vH ¼ P : ð _Fþ F�T _
FTFÞ=2 ¼ P : _F of the stress power.

It is the symmetry of S and s that we use _W ¼ S : _E ¼ S : ð _
FTFþ FT _FÞ=2, and _W ¼ s : £ve ¼ s : ðlþ lTÞ=2

instead of _W ¼ S :
_
FTF and _W ¼ s : l, respectively. However, it is the property of P that we use _W ¼ P : _F

instead of _W ¼ P : £vH ¼ P : ð _Fþ F�T _
FTFÞ=2, although, by analogy with the structure above _W ¼ P : £vH

would be the expression to use.
5. The principle of virtual work and its linearization in terms of the two-point tensor H

In this section we provide the principle of virtual work and its linearization, which constitute a fun-

damental basis for an implementation in a finite element program. We follow the notation and adopt

standard results presented in textbooks of nonlinear continuum mechanics (see, for example, Holzapfel,

2000).

Before proceeding it is necessary to provide the Lie derivative £Duð£duHÞ of £duH in the direction of the

vector Du. By analogy with the transformation (9)1 we may write
£Duð£duHÞ ¼ F�TDDudE ¼ 1

2
½ðgradDuÞTGradduþ ðgradduÞTGradDu�; ð33Þ
where the common definitions gradDu ¼ GradDuF�1 and graddu ¼ GradduF�1 for the spatial gradients

have been used. In addition, by analogy with Eq. (9)1 we may write £duH ¼ F�TdE, and we deduce from

dWint ¼
R
X0
S : dEdV that
dWint ¼
Z
X0

P : £duHdV ; ð34Þ
where £duH is given by the explicit form
£duH ¼ 1

2
½Gradduþ ðgradduÞTF�: ð35Þ
Now, we determine the Lie derivative of dWint in the direction of Du. Thus, by means of the product rule

we find from (34) that
£DudWint ¼
Z
X0

½£DuP : £duHþ P : £Duð£duHÞ�dV : ð36Þ
In order to proceed we need the explicit form for £DuP. By analogy with (12)1 we introduce the trans-

formation £DuP ¼ FDDuS, where the linearization of the second Piola–Kirchhoff stress tensor is

DDuSðEÞ ¼ C : DDuE, with the material elasticity tensor C. By analogy with (9)1 we get £DuH ¼ F�TDDuE,

which finally leads to
£DuP ¼ FC : FT£DuH; ð37Þ

where £DuH ¼ ½GradDuþ ðgradDuÞTF�=2 is according to (35)2.
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For convenience we proceed in index notation. The double contraction of the two tensors £DuP and £duH

gives the scalar function
£DuP : £duH ¼ £DuPaB£duHaB ¼ FaACABCDFcC£DuHcD£duHaB ¼ £duHaBĉaBcD£DuHcD; ð38Þ

where the definition ĉaBcD ¼ ðĉÞaBcD ¼ FaAFcCCABCD has been introduced. Finally, (36) may be written in

index and symbolic notations
£DudWint ¼
Z
X0

ðPaA£Duð£duHaAÞ þ £duHaBĉaBcD£DuHcDÞdV ; ð39Þ

£DudWint ¼
Z
X0

ðP : £Duð£duHÞ þ £duH : ĉ : £DuHÞdV ; ð40Þ
which constitutes a novel form for the linearization of dWint. Similarly to expressions which refer to the

reference and current configurations, in Eqs. (39) and (40) there are material and geometrical contributions.

Note that a similar derivation of £DudWint in terms of P and dF leads only to one term (no split in two parts

occurs, see, for example, Holzapfel, 2000, p. 401).

Table 1 summarizes the deformation measureH, its Lie derivative £duH and the linearization of £duH, the

strain-energy function and stress power, as well as the Lie derivative of the internal virtual work and its

linearization in a two-point formulation. In addition, for the sake of completeness, it shows the associated

expressions in the Lagrangian and Eulerian descriptions.
As clearly seen from Table 1 the structure of the two-point formulation, in which one index of the tensor

quantities describes the spatial coordinates xa, and the other the material coordinates XA, is the analogue of

those of the Lagrangian and Eulerian descriptions.
6. Example

The goal of this example is to propose a simple Saint Venant–Kirchhoff type of a strain-energy function
in terms of the proposed deformation tensor H. Additionally, we study the stress-stretch behavior of a one

dimensional rod problem and analyze the growth condition.

We consider the form
WðHÞ ¼ c
2
ðtrHÞ2 þ ltrH2 ð41Þ
of a strain-energy function, in which c > 0 and l > 0 are the two constants of Lam�e. The Lam�e constant c
is usually denoted in the literature by the symbol k. However, in order to avoid confusion with the stretch

ratio k we use a different symbol for it. Note that the volume ratio J does not appear explicitly in the Saint

Venant–Kirchhoff model.

According to Eq. (A.2), see Appendix A, a straightforward computation gives the constitutive relation
PðHÞ ¼ 1

2
½ctrHðIþ F�TF�TÞ þ 2lðHT þ F�THF�TÞ�: ð42Þ
Now we consider uniform extension of a rod (with uniform cross-section) up to the stretch ratio k ¼ l=l0.
Then, in the transverse directions we have an equal stretch ratios, denoted by kT. Based on this kinematic

assumption, the matrix representations of the tensors F and H are given by
½F� ¼
k 0 0

0 kT 0

0 0 kT

24 35; ½H� ¼ 1

2

k� k�1 0 0

0 kT � k�1
T 0

0 0 kT � k�1
T

24 35; ð43Þ



Table 1

Continuum-mechanical relations in Lagrangian, two-point and Eulerian formulations

Lagrange formulation Two-point formulation Eulerian formulation

Strain (def.) measure E ¼ 1
2
ðFTF� IÞ H ¼ 1

2
ðF� F�TÞ ¼ F�TE e ¼ 1

2
ðI� F�TF�1Þ ¼ F�TEF�1

Strain-energy function W ¼ WðEÞ W ¼ WðHÞ W ¼ WðeÞ
Stress power _W ¼ S : _E _W ¼ P : £vH _W ¼ s : £ve

with S ¼ oWðEÞ
oE

with P ¼ FS with s ¼ FSFT

P ¼ 1

2

oWðHÞ
oH

þ F�T oWðHÞ
oH

� �T

F�T

" #
s ¼ oWðeÞ

oe
b�1

Lie derivative of the strain

(def.) measure

dE ¼ symðFTGradduÞ £duH ¼ 1
2
½Gradduþ ðgradduÞTF� ¼ F�TdE £due ¼ symðgradduÞ ¼ F�TdEF�1

Linearization of the Lie

derivative

DDudE ¼ sym½ðGradDuÞTGraddu� £Duð£duHÞ ¼ 1
2
½ðgradDuÞTGraddu

þðgradduÞTGradDu� ¼ F�TDDudE
£Duð£dueÞ ¼ sym½ðgradDuÞTgraddu�
¼ F�TDDudEF

�1

Lie derivative of the internal

virtual work

dWint ¼
Z
X0

S : dEdV dWint ¼
Z
X0

P : £duHdV dWint ¼
Z
X0

s : £duedV

Linearization of dWint DDudWint ¼
Z
X0

ðS : DDudE

þdE : C : DDuEÞdV

£DudWint ¼
Z
X0

ðP : £Duð£duHÞ

þ£duH : ĉ : £DuHÞdV

£DudWint ¼
Z
X0

ðs : £Dude

þ£due : c : £DueÞdV

Elasticity tensor ðCÞABCD ¼ oSAB
oECD

ðĉÞaBcD ¼ FaAFcCCABCD ðcÞabcd ¼ FaAFbBFcCFdDCABCD
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and, consequently, trH ¼ kT � k�1
T þ ðk� k�1Þ=2. From (42) we find that
Fig. 2.

and te

q ¼ c=
kP ¼ 1

2
ðkþ k�1Þ cðkT

�
� k�1

T Þ þ l

�
þ 1

2
c

�
ðk� k�1Þ

�
; ð44Þ
and
kTPT ¼ 1

2
ðkT þ k�1

T Þ ðc
�

þ lÞðkT � k�1
T Þ þ 1

2
cðk� k�1Þ

�
; ð45Þ
where P is the first Piola–Kirchhoff stress along the stretch ratio k of the rod, and PT denotes the first Piola–

Kirchhoff stress in the transverse direction. In the following we shall denote the ratio c=l of the two

constants of Lam�e by the parameter q (recall that q ¼ 2m=ð1� 2mÞ, with the Poisson’s ratio m). Since PT has

to be zero, from (45) we may write kT as a function of k, and may use the result to get an explicit expression
for P in terms of k. Hence, we find finally from (44) that
PI ¼ 2þ 3q
4ð1þ qÞ k

�
� 1

k3

�
: ð46Þ
where PI ¼ P=l characterizes the normalized and dimensionless first Piola–Kirchhoff stress along k.
Fig. 2 shows PI versus k for q ¼ 0, which corresponds to Poisson’s ratio m ¼ 0, then for q ¼ 0:25, 1, 4,

and for q ! 1, which corresponds to m ¼ 0:5, i.e. the incompressible case. As can be seen, for all q, the
function PI ¼ PIðkÞ is monotonic in compression and tension. Note that this is not the case for the
classical Saint Venant–Kirchhoff model (frequently used for engineering structures), which is characterized

by the strain-energy function WðEÞ ¼ cðtrEÞ2=2þ ltrE2 (see, for example, Ciarlet, 1988, p. 155, the exercise

in Holzapfel, 2000, pp. 250–251). For the classical Saint Venant–Kirchhoff model PI ¼ PIðkÞ is not

monotonic in compression, and hence it does not fulfill the growth condition. The classical Saint Venant–

Kirchhoff model is therefore not suitable for large compressive strains.
Normalized first Piola–Kirchhoff stress PI ¼ P=l versus the stretch ratio k ¼ l=l0 showing monotonic curves in compression

nsion. The constitutive relation PI ¼ PIðkÞ is derived from the strain-energy function WðHÞ ¼ cðtrHÞ2=2þ ltrH2. The ratio

l was chosen to be 0, 0.25, 1, 4 and ! 1.
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Note that the proposed material model satisfies the growth condition, meaning that for k ! 0þ the stress

tends to �1, and for k ! 1 the stress tends to þ1, which is physically realistic. Hence, this material

model is also suitable for large compressive strains.
Acknowledgements

Special thanks go to Professor Ray W. Ogden, Ph.D., from the Department of Mathematics, University

of Glasgow, UK, to Christian T. Gasser, Ph.D., from the Institute for Structural Analysis––Computational

Biomechanics, Graz University of Technology, Austria, and to Jordi Alcoverro, Ph.D., from the Uni-

versidad Polit�ecnica de Catalunya in Barcelona, Spain, who contributed to this paper in form of helpful

discussions.
Appendix A

Constitutive equation in the two-point formulation. Here we derive the constitutive equation between the

first Piola–Kirchhoff stress tensor P and the deformation measure H.
Recall the definition (1) and assume a free Helmholtz-energy function according to W ¼ WðHÞ. Thus, by

means of the relations l ¼ _FF�1 and
_

F�T ¼ �F�T _
FTF�T ¼ �lTF�T we find that
_W ¼ oWðHÞ
oH

: _H ¼ 1

2

oW
oH

: ð _Fþ lTF�TÞ ¼ 1

2

oW
oH

"
þ F�T oW

oH

� �T

F�T

#
: _F: ðA:1Þ
On the other hand from (30)3, and the properties l ¼ _FF�1 and PFT ¼ FPT we get
_W ¼ P : ðlFþ lTFÞ=2 ¼ P : lF. Consequently, for arbitrary choices of _F, we find with (A.1)3 the physical

expression
PðHÞ ¼ 1

2

oW
oH

"
þ F�T oW

oH

� �T

F�T

#
; ðA:2Þ
where P and H are not conjugate variables.

Note that general constitutive equations for incompressible hyperelastic materials may be derived from
the postulate
W ¼ WðHÞ � pðdetH� 1Þ; ðA:3Þ
where the strain energy W is defined for detH ¼ 0 ðJ ¼ 1Þ. The scalar p introduced in (A.3) serves as an

indeterminate Lagrange multiplier.
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